Spatial Computing
From Manifold Geometry to Biology

Jacob Beal
AMORPH Conference
August, 2010
How do you program 10^{12} cells?

[Weiss, '05]

Forget the cells... program the space!
When the world is geometric... take advantage of it!
Outline

- What is Spatial Computing?
- Global \rightarrow Local \rightarrow Global
- From Space to Robustness & Scalability
- The Biological World
Spatial Computers

Robot Swarms

Biological Computing

Sensor Networks

Reconfigurable Computing

Cells during Morphogenesis

Modular Robotics
More formally...

- A spatial computer is a collection of computational devices distributed through a physical space in which:
 - the difficulty of moving information between any two devices is strongly dependent on the distance between them, and
 - the “functional goals” of the system are generally defined in terms of the system's spatial structure.
More formally...

- A spatial computer is a collection of computational devices distributed through a physical space in which:
 - the difficulty of moving information between any two devices is strongly dependent on the distance between them, and
 - the “functional goals” of the system are generally defined in terms of the system's spatial structure

Notice the ambiguities in the definition
Graphs

Crystalline (e.g. CAs)

Amorphous/Continuous

(w. Dan Yamins)
Graphs

Crystalline (e.g. CAs)

Amorphous/Continuous

(w. Dan Yamins)
Graphs

Crystalline (e.g. CAs)

Amorphous/Continuous

(w. Dan Yamins)

Density

Space complexity

Jitter

Grain size

Spatial computing
Space/Network Duality

device

neighborhood
Example: Target Tracking

Intruder

Guard
Example: Target Tracking
Example: Target Tracking
Example: Museum Guide

I would like to see the Mona Lisa, avoiding the queues…

I've gotten lost! How can I rejoin my friends?
Example: Morphogenesis
How can we program these?

- Desiderata for approaches:
 - Simple, easy to understand code
 - Robust to errors, adapt to changing environment
 - Scalable to potentially vast numbers of devices
 - Take advantage of spatial nature of problems
Outline

• What is Spatial Computing?
• **Global → Local → Global**
• From Space to Robustness & Scalability
• The Biological World
Example: Target Tracking

Intruder

Guard
Geometric Program: Channel

Source

Destination

(cf. Butera)
Geometric Program: Channel
Geometric Program: Channel

Source

Destination

(cf. Butera)
Geometric Program: Channel

(c.f. Butera)
Geometric Program: Channel

(cf. Butera)
Geometric Program: Channel

(cf. Butera)
Computing with fields

- Source
- Gradient
- Distance
- Delay
- Width
- Dilate
Computing with fields

source

gradient

destination

gradient

distance

<=

dilate

width

+
Amorphous Medium

- Continuous space & time
- Infinite number of devices
- See neighbors' past state

Approximate with:
- Discrete network of devices
- Signals transmit state
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (gradient src)
 (gradient dst))
 d)))
 (dilate trail width)))
Proto's Families of Primitives

Pointwise

Feedback

Restriction

Neighborhood

delay

restrict

nbr

any-hood
Modulation by Restriction

source

destination

10

coord

channel

10

(gradcast

5.7)
In simulation...
Swarm Robots

w. McLurkin, Bachrach, Correll
Device Motion = Vector Fields

brownian flock cluster-to

contour-field search-and-rescue
Weaknesses

- Functional programming scares people
- Programmers can break the abstraction
- No dynamic allocation of processes
- No formal proofs available for quality of approximation in a composed program

(active research on last two)
Outline

- What is Spatial Computing?
- Global \rightarrow Local \rightarrow Global
- **From Space to Robustness & Scalability**
- The Biological World
Why use continuous space?

- Simplicity
- Scaling & Portability
- Robustness

2000 devices

150 devices
Continuous Programs → Self-Scaling

Target tracking across three orders of magnitude
Robustness

• Local change adapts in discrete approximation
• Global change adapts in manifold geometry
Composition

- Purely functional = simpler composition
- Self-stabilizing geometric algorithms can be composed feed-forward
- Approximation error can be predicted
Outline

• What is Spatial Computing?
• Global → Local → Global
• From Space to Robustness & Scalability
• The Biological World
Computation via Transcription Network

- Regulatory protein
- RNA polymerase
- DNA promoter
- RNA
- Ribosome
- Protein
- Decay
Proto BioCompiler

High-Level Language

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))
(let ((v (diffuse aTc 0.8 0.05)))
 (green (band-detect v 0.2 1)))

Compile

Optimize

Genetic Regulatory Network

Assemble

Living Cells
Proto

Engineered Bacteria

(band-detect (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let
 ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

simpler, more reusable

[Beal & Bachrach, '08] [Weiss '05]
Band detect: behavior

Proto

Engineered Bacteria

[Beal & Bachrach, '08]

[Weiss '05]
Classical Optimization can be Adapted

(def band-detector
 (signal lo hi)
 (and (> signal lo)
 (< signal hi)))
(let
 ((v (diffuse
 (aTc) 0.8 0.05)))
 (green
 (band-detect v 0.2 1)))
Morphogenetic Engineering
Why doesn't growth injure animals?

Many interlinked systems

- Muscles, bones, blood, lungs, kidneys, etc...
- How is growth synchronized?
 - Not like building a house!

Consider Osgood-Schlatter's disease...
Functional Blueprint

1. Functional behavior that degrades gracefully
2. Metric for degree and direction of stress
3. Incremental growth program for stress relief
4. Program to construct minimal initial system
Example: Vascular System
Example: Vascular System

- Oxygen-starved cells signal capillary to leak
Example: Vascular System

- Oxygen-starved cells signal capillary to leak
Example: Vascular System

- Oxygen-starved cells signal capillary to leak
- New capillaries sprout
Example: Vascular System

- Oxygen-starved cells signal capillary to leak
- New capillaries sprout
- Blood vessels are elastic: persistent stretch triggers growth; persistent slack shrinks
Example: Vascular System

- Oxygen-starved cells signal capillary to leak
- New capillaries sprout
- Blood vessels are elastic: persistent stretch triggers growth; persistent slack shrinks

Metric: oxygen, elastic stress

Homeostastic: leaking, vessel grow/shrink
Growth via Density Maintenance

(def simple-tissue ()
 (let ((packing (num-nbrs)))
 (clone (and (< packing 8) (< (rnd 0 1) 0.1)))
 (die (and (> packing 12) (< (rnd 0 1) 0.1)))
 (disperse 0.9)))

proto "(mov (simple-tissue))" -m -s 0.1 -dist-dim -25 -15 -5 5 -dim 500 500 -rad 2 -w
Vascularization

(def vascularize (source serv-range)
 (rep (tup vessel served parent)
 (tup source source (if source (mid) -1))
 (mux source
 (tup 1 1 -1)
 (let ((service (< (gradient vessel) serv-range))
 (server (gradcast vessel (mid)))
 (children (sum-hood (= (mid) (nbr parent)))))
 (mux vessel
 (mux (or (muxand (any-hood (and (= (nbr (mid)) parent)
 (> (nbr children) 2)))
 (< (rnd 0 1) 0.1))
 (not (any-hood (= (nbr (mid)) parent)))))
 (tup 0 1 -1) ; vessel is discarded
 (tup 1 1 (probe parent 0))) ; vessels stay fixed
 (mux (muxand (muxand (any-hood (nbr vessel))
 (dilate (not served) serv-range))
 (< (rnd 0 1) 0.02))
 (tup 1 1 server)
 (tup 0 service -1))))))

proto "((let ((v (vascularize (sense 1) 50)))
 (green (1st v)) (blue (not (2nd v))))" -n 200 -l -s 0.1 -m
Vascularization/Density Co-Regulation
Modular Integration
Summary

• The Amorphous Medium abstraction simplifies programming of scalable, robust behavior on space-filling networks
• Proto has four families of space and time operations, compiles global descriptions into local actions that approximate the global
• Geometric metaphors allow complex spatial computing problems to be solved with very short programs.
• Spatial abstractions enable imports from computation to biology and vice versa.
Proto is available

http://stpg.csail.mit.edu/proto.html
(or google “MIT Proto”)

- Includes libraries, compiler, kernel, simulator, platforms
- Licensed under GPL (w. libc-type exception)